Tag: cloud

How to Clear Security Obstacles and Achieve Cloud Nirvana

Back-end complexity of cloud computing means there’s plenty of potential for security problems. Here’s how to get a better handle on SaaS application security.Back-end complexity of cloud computing means there’s plenty of potential for security problems. Here’s how to get a better handle on SaaS application security.Read More

Education hammered by exploits and backdoors in 2021 and 2022

In May of 2021, education underwent a siege of exploit attempts using the vulnerability CVE-2021-21551, which exploits a Dell system driver bug and helps attackers to gain access to a network. Considering that many schools across the United States use Dell hardware, it’s understandable to see such a large amount of this exploit. 

In fact, both Rockland Schools in Massachusetts and Visalia USD in California were hit with ransomware attacks during this period. The states that detected this threat the most were Minnesota and Michigan, with Detroit being the biggest target in the US. 

In September of 2021, there was a spike of the malicious setting, RiskwareTool.IFEOHijack, with detections having increased from July 2021 onward. This threat is flagged when malware modifies a registry setting that changes the default Windows debugger to a malware executable. It is a red flag that needs to be investigated immediately. Unfortunately, it doesn’t pinpoint which malware made the modification, but the increased presence of this threat, especially in Oklahoma and Washington State, calls for deeper threat hunting on the victims’ networks. During the same period, a spike in exploit detections was observed and Howard University was breached.

The Trojan TechSupportScam covers an array of applications all designed to fool users into calling a “tech support” number to solve a problem created by the application, such as a blue screen, error message, activation alert, etc. These tools started spiking in January of 2022.  Educational institutions in New Jersey have had to deal with this threat more than any other state, however the public school district of Albuquerque, NM suffered a breach during the same month that could have been influenced by this spike in scams. Students and staff likely encountered these threats when installing risky software and/or visiting shady sites.

Finally, Pennsylvania schools have been dealing with an active campaign of backdoors, specifically QBot, since March of 2022, which will likely result in greater infections during the rest of 2022.

Beyond spikes in detections, the education sector has dealt with an onslaught of attacks ranging from spyware and denial of service tools to ransomware.  Throughout the year, almost every month has a report of an educational institution under attack. The first half of 2021 saw attacks against schools in Florida, New York, Oregon, Massachusetts, and California, while the second half saw attacks against Texas, Washington D.C., Wisconsin, and Illinois. The biggest attack of 2022, so far, would be the breach of Austin Peay State University in April, though time will tell if that remains true.

The education industry has the largest userbase out of all industries, considering the constant rotation of students and faculty. Therefore, the greatest threat to these organizations are the users themselves, who may download their own applications, visit dangerous websites, and even make system modifications to get around monitoring tools.

Recommendations for education

Our recommendation for this sector includes keeping an eye out for all new exploits that might affect your organization, especially commonly used systems. In a lot of cases, organizations may have a difficult time updating quickly, because of operational needs, but in the case of schools, a single vulnerability might be duplicated across 99% of its endpoints, which turns each of those systems into backdoors for the bad guys. So, making vulnerability patching one of the highest priorities will reduce attacks and decrease malicious file installation.

Next, systems that have been infected may leave behind artifacts of its operations, for example the IFEOHijack registry setting. Additionally, threats that may be installed on day one, might not activate until a user does something specific, or a certain date comes around, allowing the threat to hide in the meantime. To combat this threat, consider creating a secure, default system image that can be easily duplicated to endpoints, returning them to a default state. While this is likely already done by many schools every year, consider increasing the frequency to every quarter, maybe even every month, and have students save their files on cloud-based storage solutions.

By utilizing a default image, an organization can erase hidden malware, reset modified settings, and provide confidence in quickly isolating or wiping out an infected system. For the education industry, it’s not so much about what threats are actively targeting schools, but rather what threats have been left behind, that open doors for other, future attacks.

Dependabot GitHub Actions Yh72sY

GitHub Dependabot Now Alerts Developers On Vulnerable GitHub Actions

Cloud-based code hosting platform GitHub has announced that it will now start sending Dependabot alerts for vulnerable GitHub Actions to help developers fix security issues in CI/CD workflows.
“When a security vulnerability is reported in an action, our team of security researchers will create an advisory to document the vulnerability, which will trigger an alert to impacted repositories,”Cloud-based code hosting platform GitHub has announced that it will now start sending Dependabot alerts for vulnerable GitHub Actions to help developers fix security issues in CI/CD workflows.
“When a security vulnerability is reported in an action, our team of security researchers will create an advisory to document the vulnerability, which will trigger an alert to impacted repositories,”Read More

AWS co-announces release of the Open Cybersecurity Schema Framework (OCSF) project

In today’s fast-changing security environment, security professionals must continuously monitor, detect, respond to, and mitigate new and existing security issues. To do so, security teams must be able to analyze security-relevant telemetry and log data by using multiple tools, technologies, and vendors. The complex and heterogeneous nature of this task drives up costs and may slow down detection and response times. Our mission is to innovate on behalf of our customers so they can more quickly analyze and protect their environment when the need arises.

With that goal in mind, alongside a number of partner organizations, we’re pleased to announce the release of the Open Cybersecurity Schema Framework (OCSF) project, which includes an open specification for the normalization of security telemetry across a wide range of security products and services, as well as open-source tools that support and accelerate the use of the OCSF schema. As a co-founder of the OCSF effort, we’ve helped create the specifications and tools that are available to all industry vendors, partners, customers, and practitioners. Joining us in this announcement is an array of key security vendors, beginning with Splunk, the co-founder with AWS of the OCSF project, and also including Broadcom, Salesforce, Rapid7, Tanium, Cloudflare, Palo Alto Networks, DTEX, CrowdStrike, IBM Security, JupiterOne, Zscaler, Sumo Logic, IronNet, Securonix, and Trend Micro. Going forward, anyone can participate in the evolution of the specification and tooling at https://github.com/ocsf.

Our customers have told us that interoperability and data normalization between security products is a challenge for them. Security teams have to correlate and unify data across multiple products from different vendors in a range of proprietary formats; that work has a growing cost associated with it. Instead of focusing primarily on detecting and responding to events, security teams spend time normalizing this data as a prerequisite to understanding and response. We believe that use of the OCSF schema will make it easier for security teams to ingest and correlate security log data from different sources, allowing for greater detection accuracy and faster response to security events. We see value in contributing our engineering efforts and also projects, tools, training, and guidelines to help standardize security telemetry across the industry. These efforts benefit our customers and the broader security community.

Although we as an industry can’t directly control the behavior of threat actors, we can improve our collective defenses by making it easier for security teams to do their jobs more efficiently. At AWS, we are excited to see the industry come together to use the OCSF project to make it easier for security professionals to focus on the things that are important to their business: identifying and responding to events, then using that data to proactively improve their security posture.

To learn more about the OCSF project, visit https://github.com/ocsf.

Want more AWS Security news? Follow us on Twitter.

Mark Ryland

Mark is the director of the Office of the CISO for AWS. He has over 30 years of experience in the technology industry and has served in leadership roles in cybersecurity, software engineering, distributed systems, technology standardization and public policy. Previously, he served as the Director of Solution Architecture and Professional Services for the AWS World Public Sector team.

In today’s fast-changing security environment, security professionals must continuously monitor, detect, respond to, and mitigate new and existing security issues. To do so, security teams must be able to analyze security-relevant telemetry and log data by using multiple tools, technologies, and vendors. The complex and heterogeneous nature of this task drives up costs and mayRead More

The Security Pros and Cons of Using Email Aliases

One way to tame your email inbox is to get in the habit of using unique email aliases when signing up for new accounts online. Adding a “+” character after the username portion of your email address — followed by a notation specific to the site you’re signing up at — lets you create an infinite number of unique email addresses tied to the same account. Aliases can help users detect breaches and fight spam. But not all websites allow aliases, and they can complicate account recovery. Here’s a look at the pros and cons of adopting a unique alias for each website.

What is an email alias? When you sign up at a site that requires an email address, think of a word or phrase that represents that site for you, and then add that prefaced by a “+” sign just to the left of the “@” sign in your email address. For instance, if I were signing up at example.com, I might give my email address as krebsonsecurity+example@gmail.com. Then, I simply go back to my inbox and create a corresponding folder called “Example,” along with a new filter that sends any email addressed to that alias to the Example folder.

Importantly, you don’t ever use this alias anywhere else. That way, if anyone other than example.com starts sending email to it, it is reasonable to assume that example.com either shared your address with others or that it got hacked and relieved of that information. Indeed, security-minded readers have often alerted KrebsOnSecurity about spam to specific aliases that suggested a breach at some website, and usually they were right, even if the company that got hacked didn’t realize it at the time.

Alex Holden, founder of the Milwaukee-based cybersecurity consultancy Hold Security, said many threat actors will scrub their distribution lists of any aliases because there is a perception that these users are more security- and privacy-focused than normal users, and are thus more likely to report spam to their aliased addresses.

Holden said freshly-hacked databases also are often scrubbed of aliases before being sold in the underground, meaning the hackers will simply remove the aliased portion of the email address.

“I can tell you that certain threat groups have rules on ‘+*@’ email address deletion,” Holden said. “We just got the largest credentials cache ever — 1 billion new credentials to us — and most of that data is altered, with aliases removed. Modifying credential data for some threat groups is normal. They spend time trying to understand the database structure and removing any red flags.”

Why might spamming aliases be a bad idea? According to the breach tracking site HaveIBeenPwned.com, only about .03 percent of the breached records in circulation today include an alias.

Email aliases are rare enough that seeing just a few email addresses with the same alias in a breached database can make it trivial to identify which company likely got hacked and leaked said database. That’s because the most common aliases are simply the name of the website where the signup takes place, or some abbreviation or shorthand for it.

Hence, for a given database, if there are more than a handful of email addresses that have the same alias, the chances are good that whatever company or website corresponds to that alias has been hacked.

That might explain the actions of Allekabels, a large Dutch electronics web shop that suffered a data breach in 2021. Allekabels said a former employee had stolen data on 5,000 customers, and that those customers were then informed about the data breach by Allekabels.

But Dutch publication RTL Nieuws said it obtained a copy of the Allekabels user database from a hacker who was selling information on 3.6 million customers at the time, and found that the 5,000 number cited by the retailer corresponded to the number of customers who’d signed up using an alias. In essence, RTL argued, the company had notified only those most likely to notice and complain that their aliased addresses were suddenly receiving spam.

“RTL Nieuws has called more than thirty people from the database to check the leaked data,” the publication explained. “The customers with such a unique email address have all received a message from Allekabels that their data has been leaked – according to Allekabels they all happened to be among the 5000 data that this ex-employee had stolen.”

HaveIBeenPwned’s Hunt arrived at the conclusion that aliases account for about .03 percent of registered email addresses by studying the data leaked in the 2013 breach at Adobe, which affected at least 38 million users. Allekabels’s ratio of aliased users was considerably higher than Adobe’s — .14 percent — but then again European Internet users tend to be more privacy-conscious.

While overall adoption of email aliases is still quite low, that may be changing. Apple customers who use iCloud to sign up for new accounts online automatically are prompted to use Apple’s Hide My Email feature, which creates the account using a unique email address that automatically forwards to a personal inbox.

What are the downsides to using email aliases, apart from the hassle of setting them up? The biggest downer is that many sites won’t let you use a “+” sign in your email address, even though this functionality is clearly spelled out in the email standard.

Also, if you use aliases, it helps to have a reliable mnemonic to remember the alias used for each account (this is a non-issue if you create a new folder or rule for each alias). That’s because knowing the email address for an account is generally a prerequisite for resetting the account’s password, and if you can’t remember the alias you added way back when you signed up, you may have limited options for recovering access to that account if you at some point forget your password.

What about you, Dear Reader? Do you rely on email aliases? If so, have they been useful? Did I neglect to mention any pros or cons? Feel free to sound off in the comments below.

One way to tame your email inbox is to get in the habit of using unique email aliases when signing up for new accounts online. Adding a “+” character after the username portion of your email address — followed by a notation specific to the site you’re signing up at — lets you create an infinite number of unique email addresses tied to the same account. Aliases can help users detect breaches and fight spam. But not all websites allow aliases, and they can complicate account recovery. Here’s a look at the pros and cons of adopting a unique alias for each website.Read More

Deepfence ThreatMapper 1.4 Unveils Open Source Threat Graph to Visualize Cloud-Native Threat Landscape

New release also includes enterprise-grade cloud security posture management (CSPM) and YARA-based malware scanning capabilities.New release also includes enterprise-grade cloud security posture management (CSPM) and YARA-based malware scanning capabilities.Read More

cloudflare KKhcNW

Hackers Behind Twilio Breach Also Targeted Cloudflare Employees

Web infrastructure company Cloudflare on Tuesday disclosed at least 76 employees and their family members received text messages on their personal and work phones bearing similar characteristics as that of the sophisticated phishing attack against Twilio.
The attack, which transpired around the same time Twilio was targeted, came from four phone numbers associated with T-Mobile-issued SIM cardsWeb infrastructure company Cloudflare on Tuesday disclosed at least 76 employees and their family members received text messages on their personal and work phones bearing similar characteristics as that of the sophisticated phishing attack against Twilio.
The attack, which transpired around the same time Twilio was targeted, came from four phone numbers associated with T-Mobile-issued SIM cardsRead More